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Abstract

When solving a system of linear equations with the restarted GMRES method, a
fixed restart parameter is typically chosen. We present numerical experiments that
demonstrate the beneficial effects of changing the value of the restart parameter
in each restart cycle on the total time to solution. We propose a simple strategy
for varying the restart parameter and provide some heuristic explanations for its
effectiveness based on analysis of the symmetric case.
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1 Introduction

The generalized minimum residual method (GMRES) [20] is a common choice
for solving the large sparse linear system of equations

Ax = b, (1)
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when A is a nonsymmetric matrix. GMRES determines an approximate solu-
tion

x1 ∈ x0 + Kk(A, r0), (2)

where Kk(A, r0) ≡ span{r0, Ar0, . . . , A
k−1r0} denotes a k-dimensional Krylov

subspace, x0 is the initial guess, and r0 is the initial residual (r0 ≡ b − Ax0).
Because the amount of storage and computational work required by GMRES
increases with each iteration, the method is typically restarted as suggested
in [20]. Restarted GMRES, denoted by GMRES(m), performs m iterations of
GMRES, and then the resulting approximate solution is used as the initial
guess to start another m iterations. This process repeats until the residual
norm is small enough. The group of m iterations between successive restarts
is referred to as a cycle, and m is referred to as the restart parameter. We
indicate the restart cycle number with a subscript: xi is the approximate
solution after i cycles or m × i total iterations and ri is the corresponding
residual.

Our focus in this work is on the selection of the restart parameter for GMRES(m).
Traditionally, it has been assumed that the larger the value of m, the fewer
iterations are required for convergence because a large m improves the infor-
mation in the GMRES residual polynomial (see, e.g., [15]). Moreover, a large
enough m for GMRES(m) can to some extent reduce the impediment to super-
linear convergence [23] and may be required to avoid stalling [20]. However, if
m is too large, the goal of restarting as a means of reducing computational and
storage costs is negated. Furthermore, it was recently shown that a smaller m
can actually result in fewer iterations for some problems (see, e.g., [6,8]). This
unexpected result highlights the practical difficulty in choosing an appropriate
value of m.

In practice, one generally attempts to choose a value for m that balances the
good convergence properties typically resulting from a large value with the
reduction of computational work resulting from a smaller value. The value of
the GMRES(m) restart parameter is typically chosen prior to the solve and
remains fixed for the entire solve. However, several authors have proposed
varying the restart parameter for a variety of reasons. In [15], Joubert aims to
reduce the total time to solution by examining the effect of m on both con-
vergence behavior and computational cost. He proposes an adaptive method
that determines whether or not to restart based on a sophisticated test crite-
rion that weighs the work requirements against the estimated residual norm
reduction for both scenarios. In [22], the authors propose an adaptive imple-
mentation of GMRES(m) with the goal of avoiding stagnation. When their
test criterion detects stagnation, the restart parameter is increased. Similarly,
the adaptive method proposed in [12] is a modification of the method in [22]
that also increases m to avoid stagnation, but then reduces it after a fixed
number of cycles to better control the costs. The adaptive method in [25] also
has the goal of preventing stagnation and chooses m based on a comparison
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of the Ritz and harmonic Ritz values.

We are interested in the selection of the GMRES(m) restart parameter and
its effect on the time to solution. Our investigation into using a non-fixed
restart parameter to improve performance was largely motivated by two con-
siderations. First, previously mentioned works demonstrating that a larger
m does not necessarily result in fewer iterations, together with the fact that
restart cycles with smaller m are cheaper per iteration, influenced us to ex-
periment with reducing the restart parameter whenever possible. Second, an
observation was made in [2] that the GMRES(m) residual vectors at the end
of each restart cycle may alternate direction in a repetitive fashion, thereby
slowing convergence. Thus, our investigation was also motivated by the pos-
sibility that varying the restart parameter could be beneficial for convergence
by disrupting this repetitiveness. We restrict our examination of the conver-
gence of GMRES(m) to the acceleration of time to solution via selection of
restart parameters. We are not concerned at this time with the stagnation
of GMRES(m); a number of other works address stagnation issues through a
variety of approaches (see, e.g. [22,12,25,17,9,11]). Our approach to this inves-
tigation is largely experimental, though we do provide analysis for the case
when A is symmetric or normal. Our primary contribution is the simplicity
of our approach for modifying the restart parameter and its effectiveness on a
variety of problems.

This paper is organized as follows. In Section 2, we present an algorithm for
varying the restart parameter in GMRES(m). In Section 3, we demonstrate
the usefulness of our method for general matrices with experimental results
from a variety of problems. Then, in Section 4, we offer some insight as to the
effectiveness of the method via heuristic explanations based on experimental
evidence and some theory for symmetric matrices. Finally, in Section 5, we
give some concluding remarks.

2 A method for varying the restart parameter

In this section, we present a simple method for varying the restart parameter
in GMRES(m). We first define two terms. We refer to the angles between
consecutive residual vectors as sequential angles, e.g., ∠(ri+1, ri), and the an-
gles between every other residual vector as skip angles, e.g., ∠(ri+1, ri−1). As
shown in [2], sequential angles for GMRES(m) are related to the drop in
residual norm from one cycle to the next by

cos ∠(ri+1, ri) =
‖ri+1‖2

‖ri‖2

. (3)
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When consecutive residual vectors are nearly orthogonal, the drop in residual
norm between two consecutive restart cycles is large. In fact, if ri+1 ⊥ ri, then
the exact solution has been found. Note that for the purposes of our method,
we calculate the angles such that they are always between 0 and 90 degrees.

Our strategy for varying the restart parameter includes specifying minimum
and maximum restart parameters, mmin and mmax, respectively, such that
mmin ≤ mi ≤ mmax is satisfied for each cycle i with restart parameter mi.
We refer to our modification of GMRES(m) as αGMRES(mmax, mmin), and
pseudo-code is given in Figure 1. The first cycle begins with restart parameter
mmax. After that, we calculate the value of the sequential angle at the end of
each restart cycle to determine the next mi. In essence, we decrease the restart
parameter by a small number d at each cycle until we reach mmin. At that
point, we increase mi to the maximum mmax. However, if the sequential angle
is large (close to 90), indicating good convergence, then we keep the current
restart parameter instead of adjusting it. Likewise, if the sequential angle is
small (close to zero), we revert to mmax. In practice, as seen in Figure 1, we
check the convergence rate, ‖ri+1‖2/‖ri‖2, at the end of each cycle instead of
the sequential angle value, c.f. (3). Note that when a small sequential angle is
detected, a strategy that addresses stagnation, such as [11] or several others
mentioned in the previous section, could be employed if desired. We generally
take d = 3 and mmin very small (1 or 3) as the cycles with the small restart
parameters are cheap. The parameter mmax is typically chosen the same as
one would chose a fixed m for GMRES(m), storage considerations generally
being a priority. Furthermore, we consider “small” sequential angles to be
those less than about 8 degrees and “large” angles to be those greater than
80 degrees. These particular parameter values work well in our experiments,
but can generally be adjusted for a particular class of problems.

From Figure 1, it is apparent that the simplicity of the test criterion for
αGMRES(mmax, mmin) results in an negligible amount of overhead. Fur-
thermore, one can easily and quickly modify an existing implementation of
GMRES(m) to vary the restart parameter in this manner.

3 Numerical Experiments

In this section, we provide experimental evidence that demonstrates the ef-
fectiveness of the αGMRES(mmax, mmin) algorithm presented in the previous
section. First, we look at a variety of problems available from the Matrix Mar-
ket Collection [18] and the University of Florida Sparse Matrix Collection [5].
These problems are listed in Table 1. If a right-hand side was not provided, we
generated a random right-hand side. Next, we examine a convection-diffusion
problem that we generated with a finite-element code. Finally, we discuss a
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cr = 1; /* convergence rate */
max cr = cos(8) /* max conv. rate = cosine of 8 degrees ≈ .99 */
min cr = cos(80); /* min conv. rate = cosine of 80 degrees ≈ .175 */
d = 3; /* increment for adjusting */
i = 0 /* counter for restart cycles*/
x0 = 0 /* initial guess */
ri = b− Axi /* residual */

while (not converged)
/* calculate restart parameter mi */
if (cr > max cr or i == 0 ) /* first cycle or near stagnation */

mi = mmax

else if ( cr < min cr ) /* converging well */
mi = mi−1

else /* adjust */
if (mi−1 − d) ≥ mmin

mi = mi−1 − d
else

mi = mmax

end
/* restart cycle */
for j = 1 : mi

/* gmres iteration */
/* (break if convergence criterion is met) */

end
i = i + 1
/* calculate conv. rate ( = cosine of the sequential angle) */
cr = ‖ri‖2/‖ri−1‖2

end

Fig. 1. αGMRES(mmax, mmin)

few experiments with preconditioned GMRES.

We use a modified implementation of GMRES(m) based on the version avail-
able in hypre 2.0 [10,13]. All tests were run until ‖ri‖2/‖r0‖2 was less than
10−6, and the times reported are the averages of 10 runs. A zero initial guess
was used for all problems. For this comparison, we chose restart parameter
m = 30 for GMRES(m) because it is a common choice and often the default in
general linear solver packages such as PETSc [3]. For αGMRES(mmax, mmin),
we chose mmax = 30 and mmin = 3 to keep the storage requirement less than
or equal to that of GMRES(30).
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Table 1
List of test problems together with the matrix order (n), number of nonzeros (nnz),
source (MM = Matrix Market, UF = University of Florida Collection) and the
application area.

Problem n nnz Source Application Area

1 add20 2395 17,319 MM computer component design

2 cdde1 961 4681 MM 2D convection-diffusion operator

3 circuit 2 4510 21,199 UF circuit simulation

4 epb1 14,734 95,053 UF heat exchanger simulation

5 FEM 3D thermal1 17,880 430,740 UF 3D nonlinear thermal problems

6 fpga trans 01 1220 7382 UF circuit simulation

7 matrix-new 3 125,329 893,984 UF semiconductor device

8 orsirr 1 1030 6858 MM oil reservoir simulation

9 orsreg 1 2205 14,133 MM oil reservoir simulation

10 pde2961 2961 14,585 UF model PDE problem

11 raefsky1 3242 294,276 UF incompressible fluid flow

12 raefsky2 3242 293,551 UF incompressible fluid flow

13 rdbl2048 2048 12,032 MM reaction-diffusion Brusselator model

14 sherman4 1104 3786 MM oil reservoir simulation

15 steam2 600 13,760 MM injected steam oil recovery

16 stomach 213,360 3,021,648 UF bioengineering

17 wang2 2903 19,093 UF electron continuity equations

18 wang3 26,064 177,168 UF electron continuity equations

19 watt 1 1856 11,360 MM petroleum engineering

20 young3c 841 3988 UF acoustic scattering

3.1 Matrices from test collections

The x-axis in Figure 2 corresponds to the 20 test problems in Table 1. The
y-axis is the ratio of time to converge for GMRES(30) to the time to con-
verge for αGMRES(30, 3). All of the bars extend above one, indicating that
αGMRES(3, 30) requires less time to converge than GMRES(30). For exam-
ple, for Problem 1, GMRES(30) takes roughly 1.7 times as long to converge
as does αGMRES(30, 3). We compare convergence times here because our
interest is in improving the time to solution. Note that for two of these prob-
lems (Problems 13 and 16), GMRES(30) actually requires fewer iterations
than does αGMRES(30, 3). However, because iterations in restart cycles with
smaller restart parameters are on average cheaper, the time to solution of
αGMRES(30, 3) is faster.

Because of the effectiveness of αGMRES(30, 3) for these problems, a natural
question is whether using a fixed parameter smaller than 30 would be more
beneficial. We did not do an extensive parameter study, but instead addi-
tionally looked at parameters m = 20, 10, and 3. In general, for all of the
test problems, the number of iterations increased as m decreased. In terms
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Fig. 2. Matrices from test collections: a comparison of the time to convergence for
GMRES(30) and αGMRES(30, 3). Times are averages of 10 runs.

of the time to solution, GMRES(30) was only beat twice, and that was by
GMRES(10) for Problems 16 and 18. When comparing GMRES(m), with
m = 30, 20, 10, and 3, to αGMRES(30, 3), Problem 16 was the only prob-
lem for which αGMRES(30, 3) was not the fastest. For Problem 16, while
GMRES(10) was faster than αGMRES(30, 3), αGMRES(10, 3) was still faster
than GMRES(10). Therefore, our experimental results here indicate that vary-
ing the restart parameter in the manner of αGMRES(mmax, mmin) is typically
an improvement compared to GMRES(mmax) and, at the very least, does not
increase the time to solution.

3.2 Convection-diffusion problem

Now we look at a 2D convection-diffusion problem discretized with linear finite
elements on an unstructured meshing of the unit square:

−∆u− c · ∇u = f. (4)

The boundary conditions are Dirichlet (u = 0) on the bottom and top of
the square and Neumann (∂u/∂n = 0) on the remainder of the boundary.
The right-hand side is f = 1. The resulting matrix A is of size n = 35, 169,
with 242, 843 nonzeros. A coarse version of the unstructured mesh is shown in
Figure 3.
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Fig. 3. A coarse version of the unstructured mesh used for the convection-diffusion
problems.

This convection-diffusion equation makes an interesting test problem because,
by varying vector c, we can easily affect the difficulty of the problem for
GMRES(m) and αGMRES(mmax, mmin). We created 14 test problems by
varying the components of c between 0 and 1550. For each test problem, the
two components of c, corresponding to the x- and y-dimensions were chosen
to be the same. The choice c = 0 corresponds to the symmetric case, and,
as c increases, the matrix A becomes increasingly nonsymmetric. The choice
c = 1550 corresponds approximately to the smallest value of c for which
stagnation occurs. In Table 2, we list the chosen values for c along with the
assigned problem number.

First we discuss the convergence of GMRES(m) for these problems. The num-
bers of GMRES(30) and GMRES(10) iterations required for convergence are
listed in Table 2. If GMRES(m) did not converge in 10,000 iterations, then
we say that the problem did not converge. Problem 1, which is symmetric,
takes more GMRES(30) iterations to converge than any other problem, with
the exception of Problem 14, which stagnates. The problems in the middle
range of c take the fewest iterations to converge. Additionally, unlike the test
problems in the previous section and most problems we have encountered in
practice, many of these convection-diffusion problems (Problems 5-11) are un-
usual in that the number of iterations required for GMRES(m) convergence
generally decreases with decreasing m. With fewer iterations required for a
smaller restart parameter, GMRES(10) is clearly faster than GMRES(30) for
Problems 5-11. GMRES(10) is also faster for Problems 4, 12, and 13, despite
taking slightly more iterations. (Though we note that it is only beneficial to
decrease m up to a point: GMRES(3) takes both more iterations and more
time to converge than does GMRES(10) for all problems.)
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Table 2
Numbered list of test problems generated by the convection-diffusion equation (3.2)
together with the convection coefficients (c), and the numbers of GMRES(30) and
GMRES(10) iterations (and time in seconds) required to achieve ‖ri‖2/‖r0‖2 <
10−6. (DNC = does not converge.)

c GMRES(30) GMRES(10)

1 0 7473 (78.1) DNC (–)

2 1 7130 (74.2) DNC (–)

3 10 1728 (18.1) 5263 (32.1)

4 50 585 (6.2) 925 (5.7)

5 100 590 (6.1) 560 (3.4)

6 300 771 (8.0) 603 (3.7)

7 500 891 (9.3) 751 (4.6)

8 700 1004 (10.3) 903 (5.5)

9 900 1125 (12.0) 1036 (6.4)

10 1100 1255 (13.1) 1140 (7.0)

11 1300 1334 (13.8) 1279 (7.8)

12 1500 2007 (20.8) 2280 (14.0)

13 1525 2495 (26.0) 3030 (18.5)

14 1550 DNC (–) DNC (–)

We now again compare the time to solution for GMRES(30) to αGMRES(30,
3). The x-axis in Figure 4 corresponds to the 14 test problems in Table 2.
The y-axis is the ratio of time to converge for GMRES(30) to the time to
converge for αGMRES(30, 3). For all of these problems, αGMRES(3, 30)
requires less time to converge than GMRES(30). Problems 1 and 2, which
are symmetric or nearly symmetric and require the most iterations, benefit
the most from the adaptive scheme. (In the next section, we discuss in some
detail the performance of GMRES(m) on symmetric problems.) On the other
hand, Problem 14 stagnates for GMRES(mmax), and as mentioned previously,
αGMRES(mmax, mmin) does not overcome stagnation. Overall, it appears that
αGMRES(3, 30) provides the most improvement for problems that are close
to symmetric.

Recall that for Problems 5-11, GMRES(10) requires fewer iterations and is
faster than GMRES(30). Therefore, it is not surprising that GMRES(10)
is also faster than αGMRES(30, 3) for these problems. However, for these
problems, αGMRES(10, 3) is either slightly faster or about the same as
GMRES(10). The trend in the results in Figure 4 could also be interpreted as
αGMRES(mmax, mmin) is less beneficial for problems for which the GMRES(m)
iteration count decreases with decreasing m.
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Fig. 4. Convection-diffusion problems: a comparison of the time to convergence for
GMRES(30) and αGMRES(30, 3). Times are averages of 10 runs.

3.3 GMRES with preconditioning

As with most acceleration strategies, improving the time to solution for GMRES(m)
via the αGMRES(mmax, mmin) method is not intended as an alternative to a
good preconditioner. Therefore, while our focus in this paper is on GMRES(m)
convergence without preconditioning, as a curiosity, we provide the results of
limited testing of αGMRES(30, 3) with preconditioners in Table 3. The first
five test problems are from the University of Florida Sparse Matrix Collection,
and the sixth problem is Problem 3 from Table 2 in the previous section. The
preconditioners used are an algebraic multigrid preconditioner, BoomerAMG,
an ILU preconditioner, Euclid, and a sparse approximate inverse (SPAI) pre-
conditioner, ParaSails, all available in the hypre software library. (See [13] for
additional information on these preconditioners.) We do not claim to have
found the optimal preconditioner for any of these problems, but simply chose
a variety for illustrative purposes.

While a more extensive investigation of preconditioning is a subject for future
work, these test problems seem to indicate that our restart parameter strategy
can still be effective when combined with preconditioning. As in the case of
no preconditioning, for problems that already converge quickly, the scheme
does not have a negative effect. For example, Problem 3 converges in fewer
than four GMRES(30) restarts, and the sequential angles are large enough
that αGMRES(3, 30) never changes the restart from the initial m = 30.
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Table 3
List of test problems together with the matrix order (n), preconditioner, application
area, and percentage improvement (%) of the time to solution of αGMRES(3, 30)
over that of GMRES(30).

Problem n Preconditioner Application Area %

1 adder dcop 01 1813 AMG circuit simulation 28

2 bcircuit 68,902 ILUT(0.01, 10) semiconductor simulation 50

3 epb3 84,617 ILU(0) heat exchanger simulation 0

4 garon2 13,535 ILU(0) computational fluid dynamics 18

5 xenon1 48,600 AMG crystalline compound materials 9

6 Problem 3, Table 2 35,169 SPAI convection-diffusion 15

4 Discussion

The purpose of this section is to provide a heuristic explanation as to why
our simple strategy for varying the restart parameter is often effective. As
mentioned in Section 1, the motivation for our new algorithm came from both
the potential to disrupt repetitive behavior in GMRES(m) as well as the desire
to use a smaller m whenever possible. Therefore, we first analyze the repetitive
behavior of symmetric matrices in Section 4.1. Then, in Section 4.2, we explain
our algorithm design in terms of the theory in Section 4.1 and the desire to
reduce computational cost. To further support our strategy for changing the
restart parameter, we discuss a work per gain in accuracy metric in Section
4.3. Finally, in Section 4.4, we provide additional comments on our algorithm
related to the numerical results presented in the previous section.

4.1 Symmetric matrices: repetitive convergence behavior

Our motivation for exploring variable restart parameters came in part from
an observation in [2]: GMRES(m) residual vectors often point in nearly the
same direction after every other restart cycle. For example, for restart cycles i
and i+2, one may observe that ri+2 ≈ σ ri, where σ ≤ 1. Furthermore, it was
observed in [2] that slow GMRES(m) convergence can often be attributed to
this alternating behavior for both symmetric and non-symmetric problems. In
the absence of small sequential angles (which indicate stagnating), small skip
angles (defined at the start of Section 2) indicate that alternating behavior is
occurring.

In [2], it is proved that alternating must occur for both symmetric and skew-
symmetric problems for the special case of a restart parameter that is one less
than the matrix order. Here we demonstrate more generally that alternating
occurs in GMRES(m) for any nonincreasing restart parameter and symmetric
or skew-symmetric A. Let φi be the skip angle between the residual vectors at
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the end of restart cycles i + 1 and i − 1, ri+1 and ri−1, respectively. Let (·, ·)
and ‖ · ‖2 be the usual Euclidean inner product and norm in Rn. We expect

cos φi =
(ri+1, ri−1)

‖ri+1‖2‖ri−1‖2

(5)

to approach one if alternating is occurring. (In this discussion, we tacitly
ignore the case where ri = 0, for any i, as this indicates that the method
has converged.) Following from (2), we can write the GMRES(m) residual at
restart cycle i in terms of a polynomial in A times the previous residual. In
particular,

ri = ri−1 −
m∑

k=1

αikA
kri−1, (6)

where αik are chosen such that ‖ri‖2 is minimized, or equivalently, ri ⊥
AKm(A, ri−1) (see, e.g., [19]).

Theorem 1 (Alternating residuals when mi is nonincreasing) When A ∈ Rn×n

is symmetric or skew-symmetric and mi is nonincreasing for successive restart
cycles i, GMRES(m) produces a sequence of residual vectors ri at the end of
each restart cycle i such that the skip angles approach zero, i.e.,

lim
i→∞

cos φi = 1.

Proof.

Because we allow mi to vary at each cycle, we have

ri = ri−1 −
mi∑
k=1

αikA
kri−1. (7)

From (7),

(ri+1, ri+1) = (ri+1, ri −
mi+1∑
k=1

α(i+1)kA
kri).

By definition, ri+1 ⊥ AKm(A, ri), so the above reduces to

(ri+1, ri+1) = (ri+1, ri). (8)

Similarly,

(ri+1, ri−1) = (ri −
mi+1∑
k=1

α(i+1)kA
kri, ri−1),
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and since A is symmetric (or skew-symmetric), the above reduces to

(ri+1, ri−1) = (ri, ri−1)−
mi+1∑

k=mi+1

(α(i+1)kA
kri, ri−1). (9)

Because mi is nonincreasing, mi+1 ≤ mi, (9) reduces to

(ri+1, ri−1) = (ri, ri−1). (10)

Therefore, from (8) and (10),

(ri+1, ri−1) = (ri, ri).

Now, using (5), we can write

cos φi =
‖ri‖2

2

‖ri+1‖2‖ri−1‖2

. (11)

Let ai be the sequence

ai =
‖ri+1‖2

‖ri‖2

. (12)

Substituting into (11),

cos φi =
ai−1

ai

. (13)

Because cos φi ≤ 1, from (13), ai−1 ≤ ai. Therefore, the sequence ai is mono-
tone increasing. (Note that ai > 0 if ri 6= 0.) By construction, ‖ri+1‖2 ≤ ‖ri‖2,
and, therefore, the sequence ai is bounded. As a result, there exists a β such
that ai → β as i →∞ which implies that

lim
i→∞

cos φi =
β

β
= 1.

The above shows that for symmetric (or skew-symmetric) matrices, alternat-
ing is a limiting process for GMRES(m) in the case of a nonincreasing or
a fixed restart parameter. This result corroborates the observation made in
[2] that, for a fixed restart parameter, the skip angles tend to zero (alter-
nating becomes more pronounced) as the iteration progresses. We note that
GMRES(30) for Problem 1 in Table 2, which is symmetric, has average and
median skip angles of .3 and .07 degrees, respectively. While the above proof
shows that this convergence happens on an infinite scale, in practice, the limit
may be reached quite rapidly. In fact, ai may be thought of as the convergence
rate of GMRES(m) and correlates to the limiting sequential angle as shown

13



in (3). It is important to observe that, when this limit is reached, GMRES(m)
convergence continues at this rate and does not improve.

The particular result regarding the convergence rate can be extended to normal
matrices, as shown in Theorem 2 below. In contrast to Theorem 1, the skip
angle may not converge to zero.

Theorem 2 (Convergence for normal matrices) Let A ∈ Rn×n be normal and
mi nonincreasing for successive restart cycles i of GMRES(m). Then the se-
quence of convergence factors defined by ai in (12) is nondecreasing and tends
to a limiting value. In particular, the convergence of GMRES(m) gets worse
with every restart cycle.

Proof. As in the proof of Theorem 1, from (12) and (8), we have

ai−1

ai

=
(ri, ri−1)

‖ri+1‖2‖ri−1‖2

.

Let Pi+1 be the GMRES(m) polynomial at restart cycle i + 1 defined by

Pi+1 = I −
mi+1∑
k=1

α(i+1)kA
k

such that ri+1 = Pi+1ri, c.f.(6). Because mi is nonincreasing, we have

(ri, ri−1) = (ri, Pi+1ri−1) = (P T
i+1ri, ri−1).

Therefore,
ai−1

ai

=
(P T

i+1ri, ri−1)

‖Pi+1ri‖2‖ri−1‖2

≤
‖P T

i+1ri‖2

‖Pi+1ri‖2

. (14)

Since A is normal, Pi+1P
T
i+1 = P T

i+1Pi+1, and the last term in (14) is equal to
one. Thus, ai is a nondecreasing sequence. As shown previously, ai ≤ 1. Note
that if A has a positive definite symmetric part, then ai may be bounded by
a number strictly less than one (see, e.g., [7]).

Another confirmation of the repetitive behavior of GMRES(m) residual for
symmetric matrices may be deduced from the work of Zavorin in [24]. This
manuscript focuses on determining the worst-case behavior of (non-restarted)
GMRES. In Section 5 of [24], Zavorin proves that A and AT achieve the
same worst-case behavior after an equivalent number of GMRES iterations
and that this behavior happens at a “cross-equality point.” He then provides
an algorithm, called the CE algorithm, that determines vectors that satisfy
cross-equality (though these are not necessarily the worst-case vectors). To link
Zavorin’s GMRES study to the alternating behavior for GMRES(m) restart
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cycles, two key observations are required. First, Zavorin defines a vector c,
quantifying GMRES performance, which is simply related to the residual r
by c = r

‖r‖22
(see the proof of Theorem 2.1 in [14]). Second, when A = AT ,

one sweep of the CE algorithm is essentially two cycles of GMRES(m) [16].
In particular, if one introduces vectors ci corresponding to each restart cycle,
then they are related to the GMRES(m) residuals ri by

ci = σi
ri

‖ri‖2

.

Here σi is a sequence of positive numbers defined by σ0 = ‖r0‖2 and σi+1σi =
‖ri‖2
‖ri+1‖2 . The CE algorithm is guaranteed to converge, and its stopping criterion

has the form

‖ci+1 − ci−1‖ < ε. (15)

Recalling from the previous section that φi is the skip angle, (15) can be shown
to be equivalent to

σi−1| sin φi| < ε.

Note that σi+1 = (cos φi)σi−1, and, therefore, σi ≥ min{ 1
‖r0‖2 , ‖r1‖2}. Thus,

the convergence of the CE algorithm for any ε means that φi → 0 when i →∞.

4.2 Motivation for our strategy

While we have only shown above that alternating occurs for symmetric ma-
trices, this alternating behavior is often observed for nonsymmetric matrices
as well [2]. Intuitively, it seems that a diversity of approximation spaces is
important for fast GMRES(m) convergence, and therefore, this repetitive be-
havior is potentially damaging. This conjecture is supported, for example,
by the effectiveness of the LGMRES method [2], which prevents alternating
and generally improves convergence over GMRES(m) for both symmetric and
nonsymmetric problems. With this in mind, as mentioned in Section 1, our
investigation into varying the restart parameter was partially motivated by
the notion that convergence could be accelerated by “disrupting” repetitive
behavior. The potential for disrupting repetitiveness by varying the restart pa-
rameter is supported by the results of experiments in [1]. There, experiments
are performed with GMRES(m) whereby the restart parameter is chosen ran-
domly at each cycle i such that mmin ≤ mi ≤ mmax. This random selection
technique is shown experimentally always to increase the median skip angle
over that of GMRES(mmax) for the test problems in [1] and often to improve
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the time to solution. However, randomly choosing restart parameters can also
slow down convergence and does not make for a practical and reliable tech-
nique.

In addition, it is well known that minimizing the residual norm as much as
possible within each cycle (for example, by choosing the largest m possible) is
not always optimal and that the residual vector direction is more important
that the norm (see, e.g., [21]). Furthermore, contrary to conventional wisdom,
a smaller m can occasionally even reduce the number of iterations as required
(see, e.g., [6,8]). Therefore, we feel that there is little motivation to use the
largest possible m for each restart cycle, particularly when cycles with smaller
m are computationally cheaper per iteration. (When stagnation is detected,
a larger m may be needed for a few cycles, but, as noted in Section 1, that
issue has been addressed by others.) We further discuss the potential benefit
of reducing the restart parameter in Section 4.3.

Therefore, based on the above heuristic considerations, we arrived at the man-
ner of varying the restart parameter presented in Section 2. First, recall from
Theorem 1 that the skip angle converges for symmetric matrices when mi is
nonincreasing. Consistent with this theorem, we typically observe experimen-
tally that, when the restart parameter is decreased incrementally, the skip
angles also tend to get smaller for nonsymmetric matrices. In addition, when
the restart parameter changes from a small to a large value, the increase in
skip angle is often quite large. Therefore, our intent is to improve performance
by choosing a pattern of restart parameters that includes periodic jumps from
small to large restart parameters. To this end, we begin the method with the
largest allowable restart parameter, mmax, which reduces the initial residual
as much as possible in the first cycle. We then slowly decrease the restart
parameter by a small number d and allow the skip angles to gradually get
smaller while providing some diversity in restart parameter values. We recom-
mend choosing d = 3, as this appears to be the most effective value. When we
reach the minimum mmin, we increase mi to the maximum mmax and benefit
from a large decrease in the residual norm. Because cycles with small restart
parameters are relatively cheap, it is reasonable to choose mmin very small;
we typically choose a value of 1 or 3.

We monitor the value of the sequential angle (or convergence rate) at the end
of each restart cycle to determine whether adjustments to this default pattern
should be made. In particular, if convergence is very good, which is indicated
by a large sequential angle, there is no need to modify the current restart
parameter and risk convergence worsening. On the other hand, if the method
is stagnating, we revert to mmax. If the use of mmax still leads to stagnation, it
is highly unlikely that anything will be gained by varying the restart parameter
further. In fact, as previously mentioned, to increase robustness, our method
could invoke a separate stagnation strategy when stagnation is detected. In
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essence, the monitoring of the sequential angle prevents our method from
performing worse than GMRES(mmax) for problems for which GMRES(mmax)
converges well.

4.3 Work per gain in accuracy considerations

Additional motivation for using a sequence of decreasing restart parameters
can be derived by considering the work per gain in accuracy (WPGA) mea-
surement (see, e.g., [4]). For example, for GMRES(m), the work for a restart
cycle i + 1 with restart parameter m = mi+1 is O(m2) due to the orthogo-
nalization costs (we ignore the matrix-vector multiply costs as they do not

depend on m). We then define our measure of gain in accuracy by ‖ri‖2
‖ri+1‖2 . In

terms of the convergence rate ai = ‖ri+1‖2
‖ri‖2 , then we have the WPGA for a

single restart cycle defined as

WPGA =
work

gain in accuracy
= aim

2. (16)

Consider a smaller restart parameter m̃ = m−d and let ãi be the corresponding
convergence rate. A natural question is whether there exists a reasonable d
(i.e., positive and less than m) such that the WPGA is lower with m̃ than m.
In other words, is there a d such that

ãim̃
2 < aim

2 (17)

holds? Assuming A is normal, from Theorem 2, we have ai−1 ≤ ai ≤ ãi ≤ 1.
Using the these bounds, a straightforward calculation shows that if ai−1 > .25,

then d ≥ (1−√ai−1)m
√

ai−1
satisfies (17). In other words, if the convergence rate is not

small, then it makes sense to use a smaller restart parameter. This analysis
can be extended to k consecutive restart cycles. In this case, the WPGA is

WPGA = (
k∏

i=1

ai)(
k∑

i=1

m2
i ). (18)

Now we define mi = m and m̃i = m− id, and we want to determine whether
a d exists such that 0 ≤ d ≤ m/(k + 1) and

(
k∏

i=1

ãi)(
k∑

i=1

m̃i
2) ≤ (

k∏
i=1

ai)(
k∑

i=1

m2) (19)

is satified. We let ã =
∏k

i=1 ãi and a =
∏k

i=1 ai and assume, without loss
of generality, that ã ≥ a. In Table 4, we give estimates of pairs of a and d
that satisfy (19) for m = 30 and multiple values of k. Because the value of
a represents the convergence progress over several cycles, our estimates show
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Table 4
For fixed values of k between 1 and 10, this table lists the value of a above which
the WPGA can be decreased by reducing m by d for each of the k cycles. The
corresponding average convergence factor per cycle (âi) is also listed.

k a d âi

1 .25 15 .25

2 .28 10 .53

3 .29 7 .66

4 .30 6 .74

5 .31 5 .79

6 .31 4 .82

7 .31 3 .85

8 .31 3 .87

9 .32 3 .88

10 .32 2 .89

that if this convergence is less than 1/3, we could have reduced the restart
parameter without penalty in terms of the WPGA. The average convergence
factor per cycle, âi, is simply a1/k. We note that the estimates in our table are
pessimistic (for example, we assume ã = 1), and in practice it is beneficial to
reduce m for much smaller values of the average convergence factor.

4.4 Additional comments on experimental results

Varying the restart parameter certainly appears to be very effective for the
symmetric and nearly symmetric convection-diffusion equation test problems,
Problems 1 and 2 in Table 2. For these two problems, the number of iterations
required for convergence is reduced significantly by our adaptive scheme. In
fact, for problems that are symmetric or very close to symmetric such as Prob-
lems 1 and 2, we find that using max cr = 1.0 (see Figure 1) typically yields
the optimal results. In other words, we always adjust the restart parameter
regardless of how close the convergence rate is to 1.0. Interestingly, we also
note that Joubert states in [15] that his adaptive method for choosing m is
much more effective than using a fixed m for symmetric problems.

In terms of the effect of varying the restart parameter according to αGMRES(mmax,
mmin) on the skip angles, there is a mild correlation. We collected the skip
angle at each restart cycle for the results shown in Section 3. For the problems
in Table 1, the median skip angle for αGMRES(30, 3) was larger than that of
GMRES(30) for 15 of the 20 problems (all but Problems 2, 9, 10, 12, and 16).
For the convection-diffusion problems in Table 2, the median skip angle was
increased by αGMRES(30, 3) only for Problems 1-3. The remaining problems
had relatively high skip angles to begin with.
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Disregarding any possible positive effect of varying the restart parameter on
the repetitiveness of GMRES(m), much of the decrease in solution time can be
attributed to the fact that restart cycles with smaller restart parameters are
cheaper per iteration. Therefore, it is certainly beneficial to use smaller restart
parameters when doing so does not negatively impact the convergence rate. We
generally find that the benefit of αGMRES(mmax, mmin) is greater when the
difference between mmax and mmin is enough to impact the orthogonalization
costs and allow for more variation in the restart parameter. For example,
αGMRES(30, 3) is typically more of an improvement over GMRES(30) than
αGMRES(10, 3) is over GMRES(10). In the case of a smaller mmax, such as
10, it may be advantageous to lower d to 2 and max cr to something on the
order of .92. In general, we find that a higher mmax such as 30 or 20 is much
less sensitive to the choice of d and max cr than is mmax = 10, for example.

5 Concluding remarks

In this paper, we explore the feasibility of improving the time to solution
of GMRES(m) by changing the restart parameter at each cycle. While our
proposed strategy is certainly a heuristic technique, it appears to be an ef-
fective one. Our numerical experiments indicate that αGMRES(mmax, mmin)
is typically an improvement over GMRES(mmax) and generally leads to a
faster time to solution. While there are many sophisticated techniques for im-
proving GMRES(m) convergence, the strengths of our adaptive strategy are
its effectiveness, the ease with which it can be incorporated into an exist-
ing GMRES(m) code, and the potential for complementing other GMRES(m)
acceleration or stagnation-avoidance techniques.
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